Accepted paper with abstract, SoCG'09

Eyal Ackerman, Jacob Fox, János Pach and Andrew Suk

On Grids in Topological Graphs
A topological graph is a graph drawn in the plane with vertices represented by points and edges as arcs connecting its vertices. If the edges are drawn as straight-line segments, then the graph is geometric. A (k, I)-grid in a topological graph is a pair of edge subsets E_{1} and E_{2}, such that $\left|E_{1}\right|=k,\left|E_{1}\right|=1$, and every edge in E_{1} crosses every edge in E_{2}. It is known that for fixed constants k, I, every n -vertex topological graph with no (k, l)-grid has $\mathrm{O}(\mathrm{n})$ edges. We conjecture that this remains true even when: (1) considering grids with distinct vertices; or (2) the edges within each subset of the grid are required to be pairwise disjoint and the graph is geometric. These conjectures are shown to be true apart from $\log ^{*} \mathrm{n}$ and $\log ^{2} \mathrm{n}$ factors, respectively. We also settle the second conjecture for the first nontrivial case $k=2, I=1$, and for convex geometric graphs. The latter result follows from a stronger statement that generalizes the celebrated Marcus-Tardos Theorem on excluded patterns in 0-1 matrices.

