Accepted paper with abstract, SoCG'09

Eyal Ackerman, Jacob Fox, János Pach and Andrew Suk

On Grids in Topological Graphs

A *topological graph* is a graph drawn in the plane with vertices represented by points and edges as arcs connecting its vertices. If the edges are drawn as straight-line segments, then the graph is *geometric*. A (k, l)-grid in a topological graph is a pair of edge subsets E_1 and E_2 , such that $|E_1| = k$, $|E_1| = l$, and every edge in E_1 crosses every edge in E_2 . It is known that for fixed constants k, l, every *n*-vertex topological graph with no (k, l)-grid has O(n) edges. We conjecture that this remains true even when: (1) considering grids *with distinct vertices*; or (2) the edges within each subset of the grid are required to be *pairwise disjoint* and the graph is geometric. These conjectures are shown to be true apart from log* n and log² n factors, respectively. We also settle the second conjecture for the first nontrivial case k = 2, l = 1, and for *convex* geometric graphs. The latter result follows from a stronger statement that generalizes the celebrated Marcus-Tardos Theorem on excluded patterns in 0-1 matrices.